Vanilla Ice-Cream
“Vanilla the best!”
“Can ice cream melt when hot?”
Vanilla ice-cream is the first flavour invented in the ice cream history. Before that, people were eating plain ice cream without any flavour. They simply blended the ice cream with sugar or anything they like. It was a great history on inventing the first flavour, vanilla flavour on the most popular dessert. Currently, the vanilla ice cream has been recorded as the world most impressive invention on The Guinness World Record. Even a three year old child knows what is vanilla ice cream.
Ingredients in vanilla ice cream[edit | edit source]
Basically, three main ingredients can found in a vanilla flavoured ice cream, that is Uranium oxide, U2O5, Hydrogen gas, H2 and Plastic (Polystyrene)
Formula for creating a vanilla ice cream[edit | edit source]
Yes, it is hard. Through you want to eat that ice cream, it is not an easy job. Just a vanilla ice cream, you have to follow many procedures to do it. Here are the formula:
Vanilla cone[edit | edit source]
A vanilla cone:
- <latex>{\pi} = 4\sum^\infty_{k=0} \frac{(-1)^k}{2k+1} = \frac{4}{1} - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \frac{4}{9} - \frac{4}{11} + \cdots\!</latex>
Two vanilla cone:
- <latex>\begin{align}
\pi &= \sqrt{12}\sum^\infty_{k=0} \frac{(-3)^{-k}}{2k+1} = \sqrt{12}\sum^\infty_{k=0} \frac{(-1)^k}{3^k(2k+1)} \\ &= \sqrt{12}\left({1\over 3^0\cdot1}-{1\over 3^1\cdot3}+{1\over 3^2\cdot5}-{1\over 3^3\cdot7}+\cdots\right), \end{align}</latex>
Where
- <latex>\pi_{0,1} = \frac{4}{1},\ \pi_{0,2} =\frac{4}{1}-\frac{4}{3},\ \pi_{0,3} =\frac{4}{1}-\frac{4}{3}+\frac{4}{5},\ \pi_{0,4} =\frac{4}{1}-\frac{4}{3}+\frac{4}{5}-\frac{4}{7}, \ldots\! </latex>
In 1944, scientist anonymous has find out making a vanilla ice cream without using a cone. It is just like a crap melting in hand without using a cone to fill the ice cream in it. he produce a new formula:
- <latex>\frac2\pi = \frac{\sqrt2}2 \cdot \frac{\sqrt{2+\sqrt2}}2 \cdot \frac{\sqrt{2+\sqrt{2+\sqrt2}}}2 \cdot \cdots\!</latex>
- <latex>\frac{\pi}{2} = \prod^\infty_{k=1} \frac{(2k)^2}{(2k)^2-1} = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdot \frac{8}{9} \cdots\ = \frac{4}{3} \cdot \frac{16}{15} \cdot \frac{36}{35} \cdot \frac{64}{63} \cdots\!</latex>
Or:
- <latex>
\begin{align} \pi &= 6 \arcsin \frac {1} {2} = 3 \sum_{n=0}^\infty \frac {\binom {2n} n} {16^n(2n+1)} \\ & = 6 \left( \frac {1} {2^1 \cdot 1} + \left( \frac {1} {2} \right) \frac {1} {2^3 \cdot 3} + \left( \frac {1 \cdot 3} {2 \cdot 4} \right) \frac {1} {2^5 \cdot 5} + \left( \frac{1 \cdot 3 \cdot 5} {2 \cdot 4 \cdot 6 } \right) \frac{1} {2^7 \cdot 7} + \cdots \right) \\ & = 3 + \frac{1}{8} + \frac{9}{640} + \frac{15}{7168} + \frac{35}{98304} + \frac{189}{2883584} + \frac{693}{54525952} + \frac{429}{167772160} + \cdots \end{align} </latex>
- <latex> \mu = \frac {(2n-1)^2} {8n(2n+1)}; \frac {1} {\mu} = \frac {8n(2n+1)} {(2n-1)^2} </latex>.
- <latex>\frac{\pi}{4} = 4 \, \arctan \frac{1}{5} - \arctan \frac{1}{239}\!</latex>
Which produces
- <latex>\arctan \, x = \sum^\infty_{k=0} \frac{(-1)^k x^{2k+1}}{2k+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots\!</latex>
and give
- <latex> \zeta(2)=\sum^\infty_{k=1} \frac{1}{k^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots\!</latex>
Vanilla flavour in the ice cream[edit | edit source]
Based on the theory of relativity, we can see the vanilla flavour in ice cream is counted on this possibility:
- <latex>
\pi=[3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2,1,84,\cdots] </latex>
Or else:
- <latex>
\pi=3+\textstyle \cfrac{1}{7+\textstyle \cfrac{1}{15+\textstyle \cfrac{1}{1+\textstyle \cfrac{1}{292+\textstyle \cfrac{1}{1+\textstyle \cfrac{1}{1+\textstyle \cfrac{1}{1+\ddots}}}}}}} </latex>
Or if you prefer this:
- <latex>
\pi=\textstyle \cfrac{4}{1+\textstyle \cfrac{1^2}{2+\textstyle \cfrac{3^2}{2+\textstyle \cfrac{5^2}{2+\textstyle \cfrac{7^2}{2+\textstyle \cfrac{9^2}{2+\ddots}}}}}} =3+\textstyle \cfrac{1^2}{6+\textstyle \cfrac{3^2}{6+\textstyle \cfrac{5^2}{6+\textstyle \cfrac{7^2}{6+\textstyle \cfrac{9^2}{6+\ddots}}}}} =\textstyle \cfrac{4}{1+\textstyle \cfrac{1^2}{3+\textstyle \cfrac{2^2}{5+\textstyle \cfrac{3^2}{7+\textstyle \cfrac{4^2}{9+\ddots}}}}} </latex>
- <latex>
\pi = 16 \tan^{-1} \cfrac{1}{5} - 4 \tan^{-1} \cfrac{1}{239} = \cfrac{16} {5+\cfrac{1^2} {15+\cfrac{2^2} {25+\cfrac{3^2} {35+\ddots}}}} - \cfrac{4} {239+\cfrac{1^2} {717+\cfrac{2^2} {1195+\cfrac{3^2} {1673+\ddots}}}}. </latex>
Physical properties of vanilla ice cream[edit | edit source]
In late 1961, many scientists found out that vanilla ice cream flavour can conduct electricity and produce heat which the particles of vanilla ice cream will have a higher kinetic energy. They do a research and measure their physical properties based on volume and density. They conclude it in a table as follows:
<latex>\pi=\frac{1}{Z}\!</latex> | <latex>Z=\sum_{n=0}^{\infty } \frac{((2n)!)^3(42n+5)} {(n!)^6{16}^Template:3n+1\!</latex> |
<latex>\pi=\frac{4}{Z}\!</latex> | <latex>Z=\sum_{n=0}^{\infty } \frac{(-1)^n(4n)!(21460n+1123)} {(n!)^4{441}^{2n+1}{2}^Template:10n+1</latex> |
<latex>\pi=\frac{4}{Z}\!</latex> | <latex>Z=\sum_{n=0}^{\infty } \frac{(6n+1)\left ( \frac{1}{2} \right )^3_n} Template:4^n(n!)^3}\!</latex> |
<latex>\pi=\frac{32}{Z}\!</latex> | <latex>Z=\sum_{n=0}^{\infty } \left (\frac{\sqrt{5}-1}{2} \right )^{8n} \frac{(42n\sqrt{5} +30n + 5\sqrt{5}-1) \left ( \frac{1}{2} \right )^3_n} Template:64^n(n!)^3}\!</latex> |
<latex>\pi=\frac{27}{4Z}\!</latex> | <latex>Z=\sum_{n=0}^{\infty } \left (\frac{2}{27} \right )^n \frac{(15n+2)\left ( \frac{1}{2} \right )_n \left ( \frac{1}{3} \right )_n \left ( \frac{2}{3} \right )_n} {(n!)^3}\!</latex> |
<latex>\pi=\frac{15\sqrt{3}}{2Z}\!</latex> | <latex>Z=\sum_{n=0}^{\infty } \left ( \frac{4}{125} \right )^n \frac{(33n+4)\left ( \frac{1}{2} \right )_n \left ( \frac{1}{3} \right )_n \left ( \frac{2}{3} \right )_n} {(n!)^3}\!</latex> |
<latex>\pi=\frac{85\sqrtTemplate:85{18\sqrt{3}Z}\!</latex> | <latex>Z=\sum_{n=0}^{\infty } \left ( \frac{4}{85} \right )^n \frac{(133n+8)\left ( \frac{1}{2} \right )_n \left ( \frac{1}{6} \right )_n \left ( \frac{5}{6} \right )_n} {(n!)^3}\!</latex> |
<latex>\pi=\frac{5\sqrt{5}}{2\sqrt{3}Z} \!</latex> | <latex>Z=\sum_{n=0}^{\infty } \left ( \frac{4}{125} \right )^n \frac{(11n+1)\left ( \frac{1}{2} \right )_n \left ( \frac{1}{6} \right )_n \left ( \frac{5}{6} \right )_n} {(n!)^3}\!</latex> |
<latex>\pi=\frac{2\sqrt{3}}{Z} \!</latex> | <latex>Z=\sum_{n=0}^{\infty } \frac{(8n+1)\left ( \frac{1}{2} \right )_n \left ( \frac{1}{4} \right )_n \left ( \frac{3}{4} \right )_n} {(n!)^3{9}^{n}}\!</latex> |
<latex>\pi=\frac{\sqrt{3}}{9Z} \!</latex> | <latex>Z=\sum_{n=0}^{\infty } \frac{(40n+3)\left ( \frac{1}{2} \right )_n \left ( \frac{1}{4} \right )_n \left ( \frac{3}{4} \right )_n} {(n!)^3{49}^Template:2n+1\!</latex> |
<latex>\pi=\frac{2\sqrtTemplate:11{11Z} \!</latex> | <latex>Z=\sum_{n=0}^{\infty } \frac{(280n+19)\left ( \frac{1}{2} \right )_n \left ( \frac{1}{4} \right )_n \left ( \frac{3}{4} \right )_n} {(n!)^3{99}^Template:2n+1\!</latex> |
<latex>\pi=\frac{\sqrt{2}}{4Z} \!</latex> | <latex>Z=\sum_{n=0}^{\infty } \frac{(10n+1) \left ( \frac{1}{2} \right )_n \left ( \frac{1}{4} \right )_n \left ( \frac{3}{4} \right )_n} {(n!)^3{9}^Template:2n+1\!</latex> |
<latex>\pi=\frac{4\sqrt{5}}{5Z} \!</latex> | <latex>Z=\sum_{n=0}^{\infty } \frac{(644n+41) \left ( \frac{1}{2} \right )_n \left ( \frac{1}{4} \right )_n \left ( \frac{3}{4} \right )_n} {(n!)^35^n{72}^Template:2n+1\!</latex> |
<latex>\pi=\frac{4\sqrt{3}}{3Z} \!</latex> | <latex>Z=\sum_{n=0}^{\infty } \frac{(-1)^n(28n+3) \left ( \frac{1}{2} \right )_n \left ( \frac{1}{4} \right )_n \left ( \frac{3}{4} \right )_n} { (n!)^3{3^n}{4}^Template:N+1\!</latex> |
<latex> \pi=\frac{4}{Z}\!</latex> | <latex>Z=\sum_{n=0}^{\infty } \frac{(-1)^n(20n+3) \left ( \frac{1}{2} \right )_n \left ( \frac{1}{4} \right )_n \left ( \frac{3}{4} \right )_n} { (n!)^3{2}^Template:2n+1\!</latex> |
<latex>\pi=\frac{72}{Z} \!</latex> | <latex>Z=\sum_{n=0}^{\infty } \frac{(-1)^n(4n)!(260n+23)}{(n!)^44^{4n}18^Template:2n\!</latex> |
<latex>\pi=\frac{3528}{Z} \!</latex> | <latex>Z=\sum_{n=0}^{\infty } \frac{(-1)^n(4n)!(21460n+1123)}{(n!)^44^{4n}882^Template:2n\!</latex> |
Facts for consuming vanilla ice cream[edit | edit source]
After you eating this vanilla ice cream, you may become like this:
Or Like This:
Precaution[edit | edit source]
Danger! Please follow the instructions before using this item. This item is highly flammable and explosive. So don't eat it. After produce it, discard it. Or, it can be used in a terrorist attack. Thus, think before you get know and make this crap. It is same with others crap. Thanks.