--Squidmate 18:21, 20 February 2008 (UTC) is the best. he is too cool, HOW DO YOU LIKE THAT UNYCLOPEDIA????
I do good mathematics and the such:
85-;+98.58= ∑ n = 0 ∞ x n n ! {\displaystyle \sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}} /∞√89!523 ‰(≤783=980.65Y[67∂]ax2 + bx + c = 0 a x 2 + b x + c = 0 {\displaystyle ax^{2}+bx+c=0} a x 2 997 + b x + c = 0 {\displaystyle ax^{2}997+bx+c=0\,} x 1 , 2 = − b ± b 2 − 4 a c 2 a {\displaystyle x_{1,2}={\frac {-b\pm {\sqrt {b^{2}-4ac}}}{2a}}} 2 = ( ( 3 − x ) × 2 3 − x ) {\displaystyle 2=\left({\frac {\left(3-x\right)\times 2}{3-x}}\right)} S n e w = S o l d + ( 5 − T ) 2 2 {\displaystyle S_{new}=S_{old}+{\frac {\left(5-T\right)^{2}}{2}}} ∫ a x ∫ a s f ( y ) d y d s = ∫ a x f ( y ) ( x − y ) d y {\displaystyle \int _{a}^{x}\int _{a}^{s}f(y)\,dy\,ds=\int _{a}^{x}f(y)(x-y)\,dy} ∑ m = 1 ∞ ∑ n = 1 ∞ m 2 n 3 m ( m 3 n + n 3 m ) {\displaystyle \sum _{m=1}^{\infty }\sum _{n=1}^{\infty }{\frac {m^{2}\,n}{3^{m}\left(m\,3^{n}+n\,3^{m}\right)}}} u ″ + p ( x ) u ′ + q ( x ) u = f ( x ) , x > a {\displaystyle u''+p(x)u'+q(x)u=f(x),\quad x>a} | z ¯ | = | z | , | ( z ¯ ) n | = | z | n , arg ( z n ) = n arg ( z ) {\displaystyle |{\bar {z}}|=|z|,|({\bar {z}})^{n}|=|z|^{n},\arg(z^{n})=n\arg(z)\,} lim z → z 0 f ( z ) = f ( z 0 ) {\displaystyle \lim _{z\rightarrow z_{0}}f(z)=f(z_{0})\,} ϕ n ( κ ) = 1 4 π 2 κ 2 ∫ 0 ∞ sin ( κ R ) κ R ∂ ∂ R [ R 2 ∂ D n ( R ) ∂ R ] d R {\displaystyle \phi _{n}(\kappa )={\frac {1}{4\pi ^{2}\kappa ^{2}}}\int _{0}^{\infty }{\frac {\sin(\kappa R)}{\kappa R}}{\frac {\partial }{\partial R}}\left[R^{2}{\frac {\partial D_{n}(R)}{\partial R}}\right]\,dR} ϕ n ( κ ) = 0.033 C n 2 κ − 11 / 3 , 1 L 0 ≪ κ ≪ 1 l 0 {\displaystyle \phi _{n}(\kappa )=0.033C_{n}^{2}\kappa ^{-11/3},\quad {\frac {1}{L_{0}}}\ll \kappa \ll {\frac {1}{l_{0}}}\,} f ( x ) = { 1 − 1 ≤ x < 0 1 2 x = 0 1 − x 2 0 < x ≤ 1 {\displaystyle f(x)={\begin{cases}1&-1\leq x<0\\{\frac {1}{2}}&x=0\\1-x^{2}&0<x\leq 1\end{cases}}} p F q ( a 1 , . . . , a p ; c 1 , . . . , c q ; z ) = ∑ n = 0 ∞ ( a 1 ) n ⋅ ⋅ ⋅ ( a p ) n ( c 1 ) n ⋅ ⋅ ⋅ ( c q ) n z n n ! {\displaystyle {}_{p}F_{q}(a_{1},...,a_{p};c_{1},...,c_{q};z)=\sum _{n=0}^{\infty }{\frac {(a_{1})_{n}\cdot \cdot \cdot (a_{p})_{n}}{(c_{1})_{n}\cdot \cdot \cdot (c_{q})_{n}}}{\frac {z^{n}}{n!}}\,}