I'm awesome. Check it out:
Fund. Theorem of Calc: ∫ a b f ( x ) d x = F ( b ) − F ( a ) . {\displaystyle \int _{a}^{b}f(x)\,dx\,=F(b)-F(a).}
Green's Theorem: ∮ C ( L d x + M d y ) = ∬ D ( ∂ M ∂ x − ∂ L ∂ y ) d x d y . {\displaystyle \oint _{C}(L\,\mathrm {d} x+M\,\mathrm {d} y)=\iint _{D}\left({\frac {\partial M}{\partial x}}-{\frac {\partial L}{\partial y}}\right)\,\mathrm {d} x\,\mathrm {d} y.}
Stoke's Theorem: ∫ Σ ∇ × F ⋅ d Σ = ∮ ∂ Σ F ⋅ d r , {\displaystyle \int _{\Sigma }\nabla \times \mathbf {F} \cdot d\mathbf {\Sigma } =\oint _{\partial \Sigma }\mathbf {F} \cdot d\mathbf {r} ,}
Divergence Theorem: ∭ V ( ∇ ⋅ F ) d V = ∬ S ⊂ ⊃ F ⋅ n d S . {\displaystyle \iiint \limits _{V}\left(\nabla \cdot \mathbf {F} \right)dV=\iint \limits _{S}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\;\;\;\subset \!\supset \mathbf {F} \cdot \mathbf {n} \,dS.}