Template:E

From Uncyclopedia, the content-free encyclopedia
Jump to navigation Jump to search
[edit] [purge] Template-info.svg Template documentation

{{I}} Other Image Banks

  1. {{Ninjastars}}
  2. {{Icons}}
  3. {{Logos}}
  4. {{Awards}}
  1. {{Flags}}
  2. {{Letters}}
  3. {{Smiley}}
  4. {{Celeste}}

Character Banks

  • {{`}} (ASCII)
  • {{E}} (HTML)

Usage

{{e|124}} : |


{{e|l}} : |

{{e|35}} : #


{{e|#}} : #



X DEC HEX HTML
! {{e|33}} x00021 excl
" {{e|34}} x00022 quot
# {{e|35}} x00023 num
$ {{e|36}} x00024 dollar
% {{e|37}} x00025 percnt
& {{e|38}} x00026 amp
' {{e|39}} x00027 apos
( {{e|40}} x00028 lpar
) {{e|41}} x00029 rpar
* {{e|42}} x0002a ast, midast
+ {{e|43}} x0002b plus
, {{e|44}} x0002c comma
. {{e|46}} x0002e period
/ {{e|47}} x0002f sol
: {{e|58}} x0003a colon
; {{e|59}} x0003b semi
< {{e|60}} x0003c lt
= {{e|61}} x0003d equals
> {{e|62}} x0003e gt
? {{e|63}} x0003f quest
@ {{e|64}} x00040 commat
[ {{e|91}} x0005b lsqb, lbrack
\ {{e|92}} x0005c bsol
] {{e|93}} x0005d rsqb, rbrack
^ {{e|94}} x0005e hat
_ {{e|95}} x0005f lowbar
` {{e|96}} x00060 grave, diacritical​grave
{ {{e|123}} x0007b lcub, lbrace
l {{e|124}} x0007c verbar, vert, verticalline
} {{e|125}} x0007d rcub, rbrace
{{e|160}} x000a0 nbsp, nonbreakingspace
¡ {{e|161}} x000a1 iexcl
¢ {{e|162}} x000a2 cent
£ {{e|163}} x000a3 pound
¤ {{e|164}} x000a4 curren
¥ {{e|165}} x000a5 yen
¦ {{e|166}} x000a6 brvbar
§ {{e|167}} x000a7 sect
¨ {{e|168}} x000a8 dot, die, doubledot, uml
© {{e|169}} x000a9 copy
ª {{e|170}} x000aa ordf
« {{e|171}} x000ab laquo
¬ {{e|172}} x000ac not
­ {{e|173}} x000ad shy
® {{e|174}} x000ae reg, circledr, reg
¯ {{e|175}} x000af macr, overbar, strns
° {{e|176}} x000b0 deg
± {{e|177}} x000b1 plusmn, pm, plusminus
² {{e|178}} x000b2 sup2
³ {{e|179}} x000b3 sup3
´ {{e|180}} x000b4 acute, diacritical​acute
µ {{e|181}} x000b5 micro
{{e|182}} x000b6 para
· {{e|183}} x000b7 middot, centerdot, centerdot
¸ {{e|184}} x000b8 cedil, cedilla
¹ {{e|185}} x000b9 sup1
º {{e|186}} x000ba ordm
» {{e|187}} x000bb raquo
¼ {{e|188}} x000bc frac14
½ {{e|189}} x000bd frac12, half
¾ {{e|190}} x000be frac34
¿ {{e|191}} x000bf iquest
À {{e|192}} x000c0 agrave
Á {{e|193}} x000c1 aacute
 {{e|194}} x000c2 acirc
à {{e|195}} x000c3 atilde
Ä {{e|196}} x000c4 auml
Å {{e|197}} x000c5 aring
Æ {{e|198}} x000c6 aelig
Ç {{e|199}} x000c7 ccedil
È {{e|200}} x000c8 egrave
É {{e|201}} x000c9 eacute
Ê {{e|202}} x000ca ecirc
Ë {{e|203}} x000cb euml
Ì {{e|204}} x000cc igrave
Í {{e|205}} x000cd iacute
Î {{e|206}} x000ce icirc
Ï {{e|207}} x000cf iuml
Ð {{e|208}} x000d0 eth
Ñ {{e|209}} x000d1 ntilde
Ò {{e|210}} x000d2 ograve
Ó {{e|211}} x000d3 oacute
Ô {{e|212}} x000d4 ocirc
Õ {{e|213}} x000d5 otilde
Ö {{e|214}} x000d6 ouml
× {{e|215}} x000d7 times
Ø {{e|216}} x000d8 oslash
Ù {{e|217}} x000d9 ugrave
Ú {{e|218}} x000da uacute
Û {{e|219}} x000db ucirc
Ü {{e|220}} x000dc uuml
Ý {{e|221}} x000dd yacute
Þ {{e|222}} x000de thorn
ß {{e|223}} x000df szlig
à {{e|224}} x000e0 agrave
á {{e|225}} x000e1 aacute
â {{e|226}} x000e2 acirc
ã {{e|227}} x000e3 atilde
ä {{e|228}} x000e4 auml
å {{e|229}} x000e5 aring
æ {{e|230}} x000e6 aelig
ç {{e|231}} x000e7 ccedil
è {{e|232}} x000e8 egrave
é {{e|233}} x000e9 eacute
ê {{e|234}} x000ea ecirc
ë {{e|235}} x000eb euml
ì {{e|236}} x000ec igrave
í {{e|237}} x000ed iacute
î {{e|238}} x000ee icirc
ï {{e|239}} x000ef iuml
ð {{e|240}} x000f0 eth
ñ {{e|241}} x000f1 ntilde
ò {{e|242}} x000f2 ograve
ó {{e|243}} x000f3 oacute
ô {{e|244}} x000f4 ocirc
õ {{e|245}} x000f5 otilde
ö {{e|246}} x000f6 ouml
÷ {{e|247}} x000f7 divide, div
ø {{e|248}} x000f8 oslash
ù {{e|249}} x000f9 ugrave
ú {{e|250}} x000fa uacute
û {{e|251}} x000fb ucirc
ü {{e|252}} x000fc uuml
ý {{e|253}} x000fd yacute
þ {{e|254}} x000fe thorn
ÿ {{e|255}} x000ff yuml
Ā {{e|256}} x00100 amacr
ā {{e|257}} x00101 amacr
Ă {{e|258}} x00102 abreve
ă {{e|259}} x00103 abreve
Ą {{e|260}} x00104 aogon
ą {{e|261}} x00105 aogon
Ć {{e|262}} x00106 cacute
ć {{e|263}} x00107 cacute
Ĉ {{e|264}} x00108 ccirc
ĉ {{e|265}} x00109 ccirc
Ċ {{e|266}} x0010a cdot
ċ {{e|267}} x0010b cdot
Č {{e|268}} x0010c ccaron
č {{e|269}} x0010d ccaron
Ď {{e|270}} x0010e dcaron
ď {{e|271}} x0010f dcaron
Đ {{e|272}} x00110 dstrok
đ {{e|273}} x00111 dstrok
Ē {{e|274}} x00112 emacr
ē {{e|275}} x00113 emacr
Ė {{e|278}} x00116 edot
ė {{e|279}} x00117 edot
Ę {{e|280}} x00118 eogon
ę {{e|281}} x00119 eogon
Ě {{e|282}} x0011a ecaron
ě {{e|283}} x0011b ecaron
Ĝ {{e|284}} x0011c gcirc
ĝ {{e|285}} x0011d gcirc
Ğ {{e|286}} x0011e gbreve
ğ {{e|287}} x0011f gbreve
Ġ {{e|288}} x00120 gdot
ġ {{e|289}} x00121 gdot
Ģ {{e|290}} x00122 gcedil
Ĥ {{e|292}} x00124 hcirc
ĥ {{e|293}} x00125 hcirc
Ħ {{e|294}} x00126 hstrok
ħ {{e|295}} x00127 hstrok
Ĩ {{e|296}} x00128 itilde
ĩ {{e|297}} x00129 itilde
Ī {{e|298}} x0012a imacr
ī {{e|299}} x0012b imacr
Į {{e|302}} x0012e iogon
į {{e|303}} x0012f iogon
İ {{e|304}} x00130 idot
ı {{e|305}} x00131 imath, inodot
IJ {{e|306}} x00132 ijlig
ij {{e|307}} x00133 ijlig
Ĵ {{e|308}} x00134 jcirc
ĵ {{e|309}} x00135 jcirc
Ķ {{e|310}} x00136 kcedil
ķ {{e|311}} x00137 kcedil
ĸ {{e|312}} x00138 kgreen
Ĺ {{e|313}} x00139 lacute
ĺ {{e|314}} x0013a lacute
Ļ {{e|315}} x0013b lcedil
ļ {{e|316}} x0013c lcedil
Ľ {{e|317}} x0013d lcaron
ľ {{e|318}} x0013e lcaron
Ŀ {{e|319}} x0013f lmidot
ŀ {{e|320}} x00140 lmidot
Ł {{e|321}} x00141 lstrok
ł {{e|322}} x00142 lstrok
Ń {{e|323}} x00143 nacute
ń {{e|324}} x00144 nacute
Ņ {{e|325}} x00145 ncedil
ņ {{e|326}} x00146 ncedil
Ň {{e|327}} x00147 ncaron
ň {{e|328}} x00148 ncaron
ʼn {{e|329}} x00149 napos
Ŋ {{e|330}} x0014a eng
ŋ {{e|331}} x0014b eng
Ō {{e|332}} x0014c omacr
ō {{e|333}} x0014d omacr
Ő {{e|336}} x00150 odblac
ő {{e|337}} x00151 odblac
Œ {{e|338}} x00152 oelig
œ {{e|339}} x00153 oelig
Ŕ {{e|340}} x00154 racute
ŕ {{e|341}} x00155 racute
Ŗ {{e|342}} x00156 rcedil
ŗ {{e|343}} x00157 rcedil
Ř {{e|344}} x00158 rcaron
ř {{e|345}} x00159 rcaron
Ś {{e|346}} x0015a sacute
ś {{e|347}} x0015b sacute
Ŝ {{e|348}} x0015c scirc
ŝ {{e|349}} x0015d scirc
Ş {{e|350}} x0015e scedil
ş {{e|351}} x0015f scedil
Š {{e|352}} x00160 scaron
š {{e|353}} x00161 scaron
Ţ {{e|354}} x00162 tcedil
ţ {{e|355}} x00163 tcedil
Ť {{e|356}} x00164 tcaron
ť {{e|357}} x00165 tcaron
Ŧ {{e|358}} x00166 tstrok
ŧ {{e|359}} x00167 tstrok
Ũ {{e|360}} x00168 utilde
ũ {{e|361}} x00169 utilde
Ū {{e|362}} x0016a umacr
ū {{e|363}} x0016b umacr
Ŭ {{e|364}} x0016c ubreve
ŭ {{e|365}} x0016d ubreve
Ů {{e|366}} x0016e uring
ů {{e|367}} x0016f uring
Ű {{e|368}} x00170 udblac
ű {{e|369}} x00171 udblac
Ų {{e|370}} x00172 uogon
ų {{e|371}} x00173 uogon
Ŵ {{e|372}} x00174 wcirc
ŵ {{e|373}} x00175 wcirc
Ŷ {{e|374}} x00176 ycirc
ŷ {{e|375}} x00177 ycirc
Ÿ {{e|376}} x00178 yuml
Ź {{e|377}} x00179 zacute
ź {{e|378}} x0017a zacute
Ż {{e|379}} x0017b zdot
ż {{e|380}} x0017c zdot
Ž {{e|381}} x0017d zcaron
ž {{e|382}} x0017e zcaron
ƒ {{e|402}} x00192 fnof
Ƶ {{e|437}} x001b5 imped
ǵ {{e|501}} x001f5 gacute
ȷ {{e|567}} x00237 jmath
ˆ {{e|710}} x002c6 circ
ˇ {{e|711}} x002c7 caron, hacek
˘ {{e|728}} x002d8 breve, breve
˙ {{e|729}} x002d9 dot, diacritical​dot
˚ {{e|730}} x002da ring
˛ {{e|731}} x002db ogon
˜ {{e|732}} x002dc tilde, diacritical​tilde
˝ {{e|733}} x002dd dblac, diacritical​doubleacute
̑ {{e|785}} x00311 downbreve
̲ {{e|818}} x00332 underbar
Α {{e|913}} x00391 alpha
Β {{e|914}} x00392 beta
Γ {{e|915}} x00393 gamma
Δ {{e|916}} x00394 delta
Ε {{e|917}} x00395 epsilon
Ζ {{e|918}} x00396 zeta
Η {{e|919}} x00397 eta
Θ {{e|920}} x00398 theta
Ι {{e|921}} x00399 iota
Κ {{e|922}} x0039a kappa
Λ {{e|923}} x0039b lambda
Μ {{e|924}} x0039c mu
Ν {{e|925}} x0039d nu
Ξ {{e|926}} x0039e xi
Ο {{e|927}} x0039f omicron
Π {{e|928}} x003a0 pi
Ρ {{e|929}} x003a1 rho
Σ {{e|931}} x003a3 sigma
Τ {{e|932}} x003a4 tau
Υ {{e|933}} x003a5 upsilon
Φ {{e|934}} x003a6 phi
Χ {{e|935}} x003a7 chi
Ψ {{e|936}} x003a8 psi
Ω {{e|937}} x003a9 omega
α {{e|945}} x003b1 alpha
β {{e|946}} x003b2 beta
γ {{e|947}} x003b3 gamma
δ {{e|948}} x003b4 delta
ε {{e|949}} x003b5 epsiv, varepsilon, epsilon
ζ {{e|950}} x003b6 zeta
η {{e|951}} x003b7 eta
θ {{e|952}} x003b8 theta
ι {{e|953}} x003b9 iota
κ {{e|954}} x003ba kappa
λ {{e|955}} x003bb lambda
μ {{e|956}} x003bc mu
ν {{e|957}} x003bd nu
ξ {{e|958}} x003be xi
ο {{e|959}} x003bf omicron
π {{e|960}} x003c0 pi
ρ {{e|961}} x003c1 rho
ς {{e|962}} x003c2 sigmav, varsigma, sigmaf
σ {{e|963}} x003c3 sigma
τ {{e|964}} x003c4 tau
υ {{e|965}} x003c5 upsi, upsilon
φ {{e|966}} x003c6 phi, phiv, varphi
χ {{e|967}} x003c7 chi
ψ {{e|968}} x003c8 psi
ω {{e|969}} x003c9 omega
ϑ {{e|977}} x003d1 thetav, vartheta, thetasym
ϒ {{e|978}} x003d2 upsi, upsih
ϕ {{e|981}} x003d5 straightphi
ϖ {{e|982}} x003d6 piv, varpi
Ϝ {{e|988}} x003dc gammad
ϝ {{e|989}} x003dd gammad, digamma
ϰ {{e|1008}} x003f0 kappav, varkappa
ϱ {{e|1009}} x003f1 rhov, varrho
ϵ {{e|1013}} x003f5 epsi, straight​epsilon
϶ {{e|1014}} x003f6 bepsi, backepsilon
Ё {{e|1025}} x00401 iocy
Ђ {{e|1026}} x00402 djcy
Ѓ {{e|1027}} x00403 gjcy
Є {{e|1028}} x00404 jukcy
Ѕ {{e|1029}} x00405 dscy
І {{e|1030}} x00406 iukcy
Ї {{e|1031}} x00407 yicy
Ј {{e|1032}} x00408 jsercy
Љ {{e|1033}} x00409 ljcy
Њ {{e|1034}} x0040a njcy
Ћ {{e|1035}} x0040b tshcy
Ќ {{e|1036}} x0040c kjcy
Ў {{e|1038}} x0040e ubrcy
Џ {{e|1039}} x0040f dzcy
А {{e|1040}} x00410 acy
Б {{e|1041}} x00411 bcy
В {{e|1042}} x00412 vcy
Г {{e|1043}} x00413 gcy
Д {{e|1044}} x00414 dcy
Е {{e|1045}} x00415 iecy
Ж {{e|1046}} x00416 zhcy
З {{e|1047}} x00417 zcy
И {{e|1048}} x00418 icy
Й {{e|1049}} x00419 jcy
К {{e|1050}} x0041a kcy
Л {{e|1051}} x0041b lcy
М {{e|1052}} x0041c mcy
Н {{e|1053}} x0041d ncy
О {{e|1054}} x0041e ocy
П {{e|1055}} x0041f pcy
Р {{e|1056}} x00420 rcy
С {{e|1057}} x00421 scy
Т {{e|1058}} x00422 tcy
У {{e|1059}} x00423 ucy
Ф {{e|1060}} x00424 fcy
Х {{e|1061}} x00425 khcy
Ц {{e|1062}} x00426 tscy
Ч {{e|1063}} x00427 chcy
Ш {{e|1064}} x00428 shcy
Щ {{e|1065}} x00429 shchcy
Ъ {{e|1066}} x0042a hardcy
Ы {{e|1067}} x0042b ycy
Ь {{e|1068}} x0042c softcy
Э {{e|1069}} x0042d ecy
Ю {{e|1070}} x0042e yucy
Я {{e|1071}} x0042f yacy
а {{e|1072}} x00430 acy
б {{e|1073}} x00431 bcy
в {{e|1074}} x00432 vcy
г {{e|1075}} x00433 gcy
д {{e|1076}} x00434 dcy
е {{e|1077}} x00435 iecy
ж {{e|1078}} x00436 zhcy
з {{e|1079}} x00437 zcy
и {{e|1080}} x00438 icy
й {{e|1081}} x00439 jcy
к {{e|1082}} x0043a kcy
л {{e|1083}} x0043b lcy
м {{e|1084}} x0043c mcy
н {{e|1085}} x0043d ncy
о {{e|1086}} x0043e ocy
п {{e|1087}} x0043f pcy
р {{e|1088}} x00440 rcy
с {{e|1089}} x00441 scy
т {{e|1090}} x00442 tcy
у {{e|1091}} x00443 ucy
ф {{e|1092}} x00444 fcy
х {{e|1093}} x00445 khcy
ц {{e|1094}} x00446 tscy
ч {{e|1095}} x00447 chcy
ш {{e|1096}} x00448 shcy
щ {{e|1097}} x00449 shchcy
ъ {{e|1098}} x0044a hardcy
ы {{e|1099}} x0044b ycy
ь {{e|1100}} x0044c softcy
э {{e|1101}} x0044d ecy
ю {{e|1102}} x0044e yucy
я {{e|1103}} x0044f yacy
ё {{e|1105}} x00451 iocy
ђ {{e|1106}} x00452 djcy
ѓ {{e|1107}} x00453 gjcy
є {{e|1108}} x00454 jukcy
ѕ {{e|1109}} x00455 dscy
і {{e|1110}} x00456 iukcy
ї {{e|1111}} x00457 yicy
ј {{e|1112}} x00458 jsercy
љ {{e|1113}} x00459 ljcy
њ {{e|1114}} x0045a njcy
ћ {{e|1115}} x0045b tshcy
ќ {{e|1116}} x0045c kjcy
ў {{e|1118}} x0045e ubrcy
џ {{e|1119}} x0045f dzcy
{{e|8194}} x02002 ensp
{{e|8195}} x02003 emsp
{{e|8196}} x02004 emsp13
{{e|8197}} x02005 emsp14
{{e|8199}} x02007 numsp
{{e|8200}} x02008 puncsp
{{e|8201}} x02009 thinsp, thinspace
{{e|8202}} x0200a hairsp, verythinspace
{{e|8203}} x0200b negativevery​thinspace, negative​thinspace, negative​mediumspace, negative​thickspace, zerowidth​space
{{e|8204}} x0200c zwnj
{{e|8205}} x0200d zwj
{{e|8206}} x0200e ‎lrm
{{e|8207}} x0200f ‏rlm
{{e|8208}} x02010 hyphen, dash
{{e|8211}} x02013 ndash
{{e|8212}} x02014 mdash
{{e|8213}} x02015 horbar
{{e|8214}} x02016 verbar, vert
{{e|8216}} x02018 lsquo, opencurlyquote
{{e|8217}} x02019 rsquo, rsquor, closecurlyquote
{{e|8218}} x0201a lsquor, sbquo
{{e|8220}} x0201c ldquo, opencurly​doublequote
{{e|8221}} x0201d rdquo, rdquor, closecurly​doublequote
{{e|8222}} x0201e ldquor, bdquo
{{e|8224}} x02020 dagger
{{e|8225}} x02021 dagger, ddagger
{{e|8226}} x02022 bull, bullet
{{e|8229}} x02025 nldr
{{e|8230}} x02026 hellip, mldr
{{e|8240}} x02030 permil
{{e|8241}} x02031 pertenk
{{e|8242}} x02032 prime
{{e|8243}} x02033 prime
{{e|8244}} x02034 tprime
{{e|8245}} x02035 bprime, backprime
{{e|8249}} x02039 lsaquo
{{e|8250}} x0203a rsaquo
{{e|8254}} x0203e oline
{{e|8257}} x02041 caret
{{e|8259}} x02043 hybull
{{e|8260}} x02044 frasl
{{e|8271}} x0204f bsemi
{{e|8279}} x02057 qprime
{{e|8287}} x0205f mediumspace
{{e|8288}} x02060 nobreak
{{e|8289}} x02061 af, ⁡applyfunction
{{e|8290}} x02062 it, ⁢invisible​times
{{e|8291}} x02063 ic, ⁣invisible​comma
{{e|8364}} x020ac euro
{{e|8411}} x020db tdot, tripledot
{{e|8412}} x020dc dotdot
{{e|8450}} x02102 copf, complexes
{{e|8453}} x02105 incare
{{e|8458}} x0210a gscr
{{e|8459}} x0210b hamilt, hilbertspace, hscr
{{e|8460}} x0210c hfr, poincareplane
{{e|8461}} x0210d quaternions, hopf
{{e|8462}} x0210e planckh
{{e|8463}} x0210f planck, hbar, plankv, hslash
{{e|8464}} x02110 iscr, imagline
{{e|8465}} x02111 image, im, imagpart, ifr
{{e|8466}} x02112 lscr, lagran, laplacetrf
{{e|8467}} x02113 ell
{{e|8469}} x02115 nopf, naturals
{{e|8470}} x02116 numero
{{e|8471}} x02117 copysr
{{e|8472}} x02118 weierp, wp
{{e|8473}} x02119 popf, primes
{{e|8474}} x0211a rationals, qopf
{{e|8475}} x0211b rscr, realine
{{e|8476}} x0211c real, re, realpart, rfr
{{e|8477}} x0211d reals, ropf
{{e|8478}} x0211e rx
{{e|8482}} x02122 trade, trade
{{e|8484}} x02124 integers, zopf
Ω {{e|8486}} x02126 ohm
{{e|8487}} x02127 mho
{{e|8488}} x02128 zfr, zeetrf
{{e|8489}} x02129 iiota
Å {{e|8491}} x0212b angst
{{e|8492}} x0212c bernou, bernoullis, bscr
{{e|8493}} x0212d cfr, cayleys
{{e|8495}} x0212f escr
{{e|8496}} x02130 escr, expectation
{{e|8497}} x02131 fscr, fouriertrf
{{e|8499}} x02133 phmmat, mellintrf, mscr
{{e|8500}} x02134 order, orderof, oscr
{{e|8501}} x02135 alefsym, aleph
{{e|8502}} x02136 beth
{{e|8503}} x02137 gimel
{{e|8504}} x02138 daleth
{{e|8517}} x02145 capital​differentiald, dd
{{e|8518}} x02146 differentiald, dd
{{e|8519}} x02147 exponentiale, exponentiale, ee
{{e|8520}} x02148 imaginaryi, ii
{{e|8531}} x02153 frac13
{{e|8532}} x02154 frac23
{{e|8533}} x02155 frac15
{{e|8534}} x02156 frac25
{{e|8535}} x02157 frac35
{{e|8536}} x02158 frac45
{{e|8537}} x02159 frac16
{{e|8538}} x0215a frac56
{{e|8539}} x0215b frac18
{{e|8540}} x0215c frac38
{{e|8541}} x0215d frac58
{{e|8542}} x0215e frac78
{{e|8592}} x02190 larr, leftarrow, leftarrow, slarr, shortleftarrow
{{e|8593}} x02191 uarr, uparrow, uparrow, shortuparrow
{{e|8594}} x02192 rarr, rightarrow, rightarrow, srarr, shortrightarrow
{{e|8595}} x02193 darr, downarrow, downarrow, shortdownarrow
{{e|8596}} x02194 harr, leftrightarrow, leftrightarrow
{{e|8597}} x02195 varr, updownarrow, updownarrow
{{e|8598}} x02196 nwarr, upperleftarrow, nwarrow
{{e|8599}} x02197 nearr, upperrightarrow, nearrow
{{e|8600}} x02198 searr, searrow, lowerrightarrow
{{e|8601}} x02199 swarr, swarrow, lowerleftarrow
{{e|8602}} x0219a nlarr, nleftarrow
{{e|8603}} x0219b nrarr, nrightarrow
{{e|8605}} x0219d rarrw, rightsquigarrow
{{e|8606}} x0219e larr, twoheadleftarrow
{{e|8607}} x0219f uarr
{{e|8608}} x021a0 rarr, twoheadrightarrow
{{e|8609}} x021a1 darr
{{e|8610}} x021a2 larrtl, leftarrowtail
{{e|8611}} x021a3 rarrtl, rightarrowtail
{{e|8612}} x021a4 leftteearrow, mapstoleft
{{e|8613}} x021a5 upteearrow, mapstoup
{{e|8614}} x021a6 map, rightteearrow, mapsto
{{e|8615}} x021a7 downteearrow, mapstodown
{{e|8617}} x021a9 larrhk, hookleftarrow
{{e|8618}} x021aa rarrhk, hookrightarrow
{{e|8619}} x021ab larrlp, looparrowleft
{{e|8620}} x021ac rarrlp, looparrowright
{{e|8621}} x021ad harrw, leftright​squigarrow
{{e|8622}} x021ae nharr, nleftrightarrow
{{e|8624}} x021b0 lsh, lsh
{{e|8625}} x021b1 rsh, rsh
{{e|8626}} x021b2 ldsh
{{e|8627}} x021b3 rdsh
{{e|8629}} x021b5 crarr
{{e|8630}} x021b6 cularr, curvearrowleft
{{e|8631}} x021b7 curarr, curvearrowright
{{e|8634}} x021ba olarr, circlearrowleft
{{e|8635}} x021bb orarr, circlearrowright
{{e|8636}} x021bc lharu, leftvector, leftharpoonup
{{e|8637}} x021bd lhard, leftharpoondown, downleftvector
{{e|8638}} x021be uharr, upharpoonright, rightupvector
{{e|8639}} x021bf uharl, upharpoonleft, leftupvector
{{e|8640}} x021c0 rharu, rightvector, rightharpoonup
{{e|8641}} x021c1 rhard, rightharpoondown, downrightvector
{{e|8642}} x021c2 dharr, rightdownvector, downharpoonright
{{e|8643}} x021c3 dharl, leftdownvector, downharpoonleft
{{e|8644}} x021c4 rlarr, rightleftarrows, rightarrowleftarrow
{{e|8645}} x021c5 udarr, uparrowdownarrow
{{e|8646}} x021c6 lrarr, leftrightarrows, leftarrow​rightarrow
{{e|8647}} x021c7 llarr, leftleftarrows
{{e|8648}} x021c8 uuarr, upuparrows
{{e|8649}} x021c9 rrarr, rightrightarrows
{{e|8650}} x021ca ddarr, downdownarrows
{{e|8651}} x021cb lrhar, reverseequilibrium, leftrightharpoons
{{e|8652}} x021cc rlhar, rightleftharpoons, equilibrium
{{e|8653}} x021cd nlarr, nleftarrow
{{e|8654}} x021ce nharr, nleftrightarrow
{{e|8655}} x021cf nrarr, nrightarrow
{{e|8656}} x021d0 larr, leftarrow, doubleleftarrow
{{e|8657}} x021d1 uarr, uparrow, doubleuparrow
{{e|8658}} x021d2 rarr, rightarrow, implies, doublerightarrow
{{e|8659}} x021d3 darr, downarrow, doubledownarrow
{{e|8660}} x021d4 harr, leftrightarrow, doubleleft​rightarrow, iff
{{e|8661}} x021d5 varr, updownarrow, doubleupdownarrow
{{e|8662}} x021d6 nwarr
{{e|8663}} x021d7 nearr
{{e|8664}} x021d8 searr
{{e|8665}} x021d9 swarr
{{e|8666}} x021da laarr, lleftarrow
{{e|8667}} x021db raarr, rrightarrow
{{e|8669}} x021dd zigrarr
{{e|8676}} x021e4 larrb, leftarrowbar
{{e|8677}} x021e5 rarrb, rightarrowbar
{{e|8693}} x021f5 duarr, downarrowuparrow
{{e|8701}} x021fd loarr
{{e|8702}} x021fe roarr
{{e|8703}} x021ff hoarr
{{e|8704}} x02200 forall, forall
{{e|8705}} x02201 comp, complement
{{e|8706}} x02202 part, partiald
{{e|8707}} x02203 exist, exists
{{e|8708}} x02204 nexist, notexists, nexists
{{e|8709}} x02205 empty, emptyset, emptyv, varnothing
{{e|8711}} x02207 nabla, del
{{e|8712}} x02208 isin, isinv, element, in
{{e|8713}} x02209 notin, notelement, notinva
{{e|8715}} x0220b niv, reverseelement, ni, suchthat
{{e|8716}} x0220c notni, notniva, notreverseelement
{{e|8719}} x0220f prod, product
{{e|8720}} x02210 coprod, coproduct
{{e|8721}} x02211 sum, sum
{{e|8722}} x02212 minus
{{e|8723}} x02213 mnplus, mp, minusplus
{{e|8724}} x02214 plusdo, dotplus
{{e|8726}} x02216 setmn, setminus, backslash, ssetmn, smallsetminus
{{e|8727}} x02217 lowast
{{e|8728}} x02218 compfn, smallcircle
{{e|8730}} x0221a radic, sqrt
{{e|8733}} x0221d prop, propto, proportional, vprop, varpropto
{{e|8734}} x0221e infin
{{e|8735}} x0221f angrt
{{e|8736}} x02220 ang, angle
{{e|8737}} x02221 angmsd, measuredangle
{{e|8738}} x02222 angsph
{{e|8739}} x02223 mid, verticalbar, smid, shortmid
{{e|8740}} x02224 nmid, notverticalbar, nsmid, nshortmid
{{e|8741}} x02225 par, parallel, double​verticalbar, spar, shortparallel
{{e|8742}} x02226 npar, nparallel, notdouble​verticalbar, nspar, nshortparallel
{{e|8743}} x02227 and, wedge
{{e|8744}} x02228 or, vee
{{e|8745}} x02229 cap
{{e|8746}} x0222a cup
{{e|8747}} x0222b int, integral
{{e|8748}} x0222c int
{{e|8749}} x0222d tint, iiint
{{e|8750}} x0222e conint, oint, contourintegral
{{e|8751}} x0222f conint, doublecontour​integral
{{e|8752}} x02230 cconint
{{e|8753}} x02231 cwint
{{e|8754}} x02232 cwconint, clockwisecontour​integral
{{e|8755}} x02233 awconint, counterclockwise​contourintegral
{{e|8756}} x02234 there4, therefore, therefore
{{e|8757}} x02235 becaus, because, because
{{e|8758}} x02236 ratio
{{e|8759}} x02237 colon, proportion
{{e|8760}} x02238 minusd, dotminus
{{e|8762}} x0223a mddot
{{e|8763}} x0223b homtht
{{e|8764}} x0223c sim, tilde, thksim, thicksim
{{e|8765}} x0223d bsim, backsim
{{e|8766}} x0223e ac, mstpos
{{e|8767}} x0223f acd
{{e|8768}} x02240 wreath, verticaltilde, wr
{{e|8769}} x02241 nsim, nottilde
{{e|8770}} x02242 esim, equaltilde, eqsim
{{e|8771}} x02243 sime, tildeequal, simeq
{{e|8772}} x02244 nsime, nsimeq, nottildeequal
{{e|8773}} x02245 cong, tildefullequal
{{e|8774}} x02246 simne
{{e|8775}} x02247 ncong, nottildefullequal
{{e|8776}} x02248 asymp, tildetilde, approx, thkap, thickapprox
{{e|8777}} x02249 nap, nottildetilde, napprox
{{e|8778}} x0224a ape, approxeq
{{e|8779}} x0224b apid
{{e|8780}} x0224c bcong, backcong
{{e|8781}} x0224d asympeq, cupcap
{{e|8782}} x0224e bump, humpdownhump, bumpeq
{{e|8783}} x0224f bumpe, humpequal, bumpeq
{{e|8784}} x02250 esdot, dotequal, doteq
{{e|8785}} x02251 edot, doteqdot
{{e|8786}} x02252 efdot, fallingdotseq
{{e|8787}} x02253 erdot, risingdotseq
{{e|8788}} x02254 colone, coloneq, assign
{{e|8789}} x02255 ecolon, eqcolon
{{e|8790}} x02256 ecir, eqcirc
{{e|8791}} x02257 cire, circeq
{{e|8793}} x02259 wedgeq
{{e|8794}} x0225a veeeq
{{e|8796}} x0225c trie, triangleq
{{e|8799}} x0225f equest, questeq
{{e|8800}} x02260 ne, notequal
{{e|8801}} x02261 equiv, congruent
{{e|8802}} x02262 nequiv, notcongruent
{{e|8804}} x02264 le, leq
{{e|8805}} x02265 ge, greaterequal, geq
{{e|8806}} x02266 le, lessfullequal, leqq
{{e|8807}} x02267 ge, greaterfull​equal, geqq
{{e|8808}} x02268 lne, lneqq
{{e|8809}} x02269 gne, gneqq
{{e|8810}} x0226a lt, nestedlessless, ll
{{e|8811}} x0226b gt, nestedgreater​greater, gg
{{e|8812}} x0226c twixt, between
{{e|8813}} x0226d notcupcap
{{e|8814}} x0226e nlt, notless, nless
{{e|8815}} x0226f ngt, notgreater, ngtr
{{e|8816}} x02270 nle, notlessequal, nleq
{{e|8817}} x02271 nge, notgreater​equal, ngeq
{{e|8818}} x02272 lsim, lesstilde, lesssim
{{e|8819}} x02273 gsim, gtrsim, greater​tilde
{{e|8820}} x02274 nlsim, notlesstilde
{{e|8821}} x02275 ngsim, notgreater​tilde
{{e|8822}} x02276 lg, lessgtr, lessgreater
{{e|8823}} x02277 gl, gtrless, greaterless
{{e|8824}} x02278 ntlg, notlessgreater
{{e|8825}} x02279 ntgl, notgreater​less
{{e|8826}} x0227a pr, precedes, prec
{{e|8827}} x0227b sc, succeeds, succ
{{e|8828}} x0227c prcue, precedes​slantequal, preccurlyeq
{{e|8829}} x0227d sccue, succeeds​slantequal, succcurlyeq
{{e|8830}} x0227e prsim, precsim, precedestilde
{{e|8831}} x0227f scsim, succsim, succeedstilde
{{e|8832}} x02280 npr, nprec, notprecedes
{{e|8833}} x02281 nsc, nsucc, notsucceeds
{{e|8834}} x02282 sub, subset
{{e|8835}} x02283 sup, supset, superset
{{e|8836}} x02284 nsub
{{e|8837}} x02285 nsup
{{e|8838}} x02286 sube, subsetequal, subseteq
{{e|8839}} x02287 supe, supseteq, superset​equal
{{e|8840}} x02288 nsube, nsubseteq, notsubsetequal
{{e|8841}} x02289 nsupe, nsupseteq, notsuper​setequal
{{e|8842}} x0228a subne, subsetneq
{{e|8843}} x0228b supne, supsetneq
{{e|8845}} x0228d cupdot
{{e|8846}} x0228e uplus, unionplus
X DEC HEX HTML
{{e|8847}} x0228f sqsub, squaresubset, sqsubset
{{e|8848}} x02290 sqsup, squaresuperset, sqsupset
{{e|8849}} x02291 sqsube, square​subsetequal, sqsubseteq
{{e|8850}} x02292 sqsupe, square​supersetequal, sqsupseteq
{{e|8851}} x02293 sqcap, square​intersection
{{e|8852}} x02294 sqcup, squareunion
{{e|8853}} x02295 oplus, circleplus
{{e|8854}} x02296 ominus, circleminus
{{e|8855}} x02297 otimes, circletimes
{{e|8856}} x02298 osol
{{e|8857}} x02299 odot, circledot
{{e|8858}} x0229a ocir, circledcirc
{{e|8859}} x0229b oast, circledast
{{e|8861}} x0229d odash, circleddash
{{e|8862}} x0229e plusb, boxplus
{{e|8863}} x0229f minusb, boxminus
{{e|8864}} x022a0 timesb, boxtimes
{{e|8865}} x022a1 sdotb, dotsquare
{{e|8866}} x022a2 vdash, righttee
{{e|8867}} x022a3 dashv, lefttee
{{e|8868}} x022a4 top, downtee
{{e|8869}} x022a5 bottom, bot, perp, uptee
{{e|8871}} x022a7 models
{{e|8872}} x022a8 vdash, doublerighttee
{{e|8873}} x022a9 vdash
{{e|8874}} x022aa vvdash
{{e|8875}} x022ab vdash
{{e|8876}} x022ac nvdash
{{e|8877}} x022ad nvdash
{{e|8878}} x022ae nvdash
{{e|8879}} x022af nvdash
{{e|8880}} x022b0 prurel
{{e|8882}} x022b2 vltri, vartriangle​left, lefttriangle
{{e|8883}} x022b3 vrtri, vartriangle​right, righttriangle
{{e|8884}} x022b4 ltrie, trianglelefteq, lefttriangle​equal
{{e|8885}} x022b5 rtrie, trianglerighteq, righttriangle​equal
{{e|8886}} x022b6 origof
{{e|8887}} x022b7 imof
{{e|8888}} x022b8 mumap, multimap
{{e|8889}} x022b9 hercon
{{e|8890}} x022ba intcal, intercal
{{e|8891}} x022bb veebar
{{e|8893}} x022bd barvee
{{e|8894}} x022be angrtvb
{{e|8895}} x022bf lrtri
{{e|8896}} x022c0 xwedge, wedge, bigwedge
{{e|8897}} x022c1 xvee, vee, bigvee
{{e|8898}} x022c2 xcap, intersection, bigcap
{{e|8899}} x022c3 xcup, union, bigcup
{{e|8900}} x022c4 diam, diamond, diamond
{{e|8901}} x022c5 sdot
{{e|8902}} x022c6 sstarf, star
{{e|8903}} x022c7 divonx, divideon​times
{{e|8904}} x022c8 bowtie
{{e|8905}} x022c9 ltimes
{{e|8906}} x022ca rtimes
{{e|8907}} x022cb lthree, leftthree​times
{{e|8908}} x022cc rthree, rightthree​times
{{e|8909}} x022cd bsime, backsimeq
{{e|8910}} x022ce cuvee, curlyvee
{{e|8911}} x022cf cuwed, curlywedge
{{e|8912}} x022d0 sub, subset
{{e|8913}} x022d1 sup, supset
{{e|8914}} x022d2 cap
{{e|8915}} x022d3 cup
{{e|8916}} x022d4 fork, pitchfork
{{e|8917}} x022d5 epar
{{e|8918}} x022d6 ltdot, lessdot
{{e|8919}} x022d7 gtdot, gtrdot
{{e|8920}} x022d8 ll
{{e|8921}} x022d9 gg, ggg
{{e|8922}} x022da leg, lessequal​greater, lesseqgtr
{{e|8923}} x022db gel, gtreqless, greater​equalless
{{e|8926}} x022de cuepr, curlyeqprec
{{e|8927}} x022df cuesc, curlyeqsucc
{{e|8928}} x022e0 nprcue, notprecedes​slantequal
{{e|8929}} x022e1 nsccue, notsucceeds​slantequal
{{e|8930}} x022e2 nsqsube, notsquare​subsetequal
{{e|8931}} x022e3 nsqsupe, notsquare​supersetequal
{{e|8934}} x022e6 lnsim
{{e|8935}} x022e7 gnsim
{{e|8936}} x022e8 prnsim, precnsim
{{e|8937}} x022e9 scnsim, succnsim
{{e|8938}} x022ea nltri, ntriangleleft, notleft​triangle
{{e|8939}} x022eb nrtri, ntriangleright, notright​triangle
{{e|8940}} x022ec nltrie, ntrianglelefteq, notleft​triangleequal
{{e|8941}} x022ed nrtrie, ntrianglerighteq, notright​triangleequal
{{e|8942}} x022ee vellip
{{e|8943}} x022ef ctdot
{{e|8944}} x022f0 utdot
{{e|8945}} x022f1 dtdot
{{e|8946}} x022f2 disin
{{e|8947}} x022f3 isinsv
{{e|8948}} x022f4 isins
{{e|8949}} x022f5 isindot
{{e|8950}} x022f6 notinvc
{{e|8951}} x022f7 notinvb
{{e|8953}} x022f9 isine
{{e|8954}} x022fa nisd
{{e|8955}} x022fb xnis
{{e|8956}} x022fc nis
{{e|8957}} x022fd notnivc
{{e|8958}} x022fe notnivb
{{e|8965}} x02305 barwed, barwedge
{{e|8966}} x02306 barwed, doublebarwedge
{{e|8968}} x02308 lceil, leftceiling
{{e|8969}} x02309 rceil, rightceiling
{{e|8970}} x0230a lfloor, leftfloor
{{e|8971}} x0230b rfloor, rightfloor
{{e|8972}} x0230c drcrop
{{e|8973}} x0230d dlcrop
{{e|8974}} x0230e urcrop
{{e|8975}} x0230f ulcrop
{{e|8976}} x02310 bnot
{{e|8978}} x02312 profline
{{e|8979}} x02313 profsurf
{{e|8981}} x02315 telrec
{{e|8982}} x02316 target
{{e|8988}} x0231c ulcorn, ulcorner
{{e|8989}} x0231d urcorn, urcorner
{{e|8990}} x0231e dlcorn, llcorner
{{e|8991}} x0231f drcorn, lrcorner
{{e|8994}} x02322 frown, sfrown
{{e|8995}} x02323 smile, ssmile
{{e|9005}} x0232d cylcty
{{e|9006}} x0232e profalar
{{e|9014}} x02336 topbot
{{e|9021}} x0233d ovbar
{{e|9023}} x0233f solbar
{{e|9084}} x0237c angzarr
{{e|9136}} x023b0 lmoust, lmoustache
{{e|9137}} x023b1 rmoust, rmoustache
{{e|9140}} x023b4 tbrk, overbracket
{{e|9141}} x023b5 bbrk, underbracket
{{e|9142}} x023b6 bbrktbrk
{{e|9180}} x023dc over​parenthesis
{{e|9181}} x023dd under​parenthesis
{{e|9182}} x023de overbrace
{{e|9183}} x023df underbrace
{{e|9186}} x023e2 trpezium
{{e|9191}} x023e7 elinters
{{e|9251}} x02423 blank
{{e|9416}} x024c8 os, circleds
{{e|9472}} x02500 boxh, horizontalline
{{e|9474}} x02502 boxv
{{e|9484}} x0250c boxdr
{{e|9488}} x02510 boxdl
{{e|9492}} x02514 boxur
{{e|9496}} x02518 boxul
{{e|9500}} x0251c boxvr
{{e|9508}} x02524 boxvl
{{e|9516}} x0252c boxhd
{{e|9524}} x02534 boxhu
{{e|9532}} x0253c boxvh
{{e|9552}} x02550 boxh
{{e|9553}} x02551 boxv
{{e|9554}} x02552 boxdr
{{e|9555}} x02553 boxdr
{{e|9556}} x02554 boxdr
{{e|9557}} x02555 boxdl
{{e|9558}} x02556 boxdl
{{e|9559}} x02557 boxdl
{{e|9560}} x02558 boxur
{{e|9561}} x02559 boxur
{{e|9562}} x0255a boxur
{{e|9563}} x0255b boxul
{{e|9564}} x0255c boxul
{{e|9565}} x0255d boxul
{{e|9566}} x0255e boxvr
{{e|9567}} x0255f boxvr
{{e|9568}} x02560 boxvr
{{e|9569}} x02561 boxvl
{{e|9570}} x02562 boxvl
{{e|9571}} x02563 boxvl
{{e|9572}} x02564 boxhd
{{e|9573}} x02565 boxhd
{{e|9574}} x02566 boxhd
{{e|9575}} x02567 boxhu
{{e|9576}} x02568 boxhu
{{e|9577}} x02569 boxhu
{{e|9578}} x0256a boxvh
{{e|9579}} x0256b boxvh
{{e|9580}} x0256c boxvh
{{e|9600}} x02580 uhblk
{{e|9604}} x02584 lhblk
{{e|9608}} x02588 block
{{e|9617}} x02591 blk14
{{e|9618}} x02592 blk12
{{e|9619}} x02593 blk34
{{e|9633}} x025a1 squ, square, square
{{e|9642}} x025aa squf, squarf, blacksquare, filledvery​smallsquare
{{e|9643}} x025ab emptyvery​smallsquare
{{e|9645}} x025ad rect
{{e|9646}} x025ae marker
{{e|9649}} x025b1 fltns
{{e|9651}} x025b3 xutri, bigtriangleup
{{e|9652}} x025b4 utrif, blacktriangle
{{e|9653}} x025b5 utri, triangle
{{e|9656}} x025b8 rtrif, blacktriangle​right
{{e|9657}} x025b9 rtri, triangleright
{{e|9661}} x025bd xdtri, bigtriangle​down
{{e|9662}} x025be dtrif, blacktriangle​down
{{e|9663}} x025bf dtri, triangledown
{{e|9666}} x025c2 ltrif, blacktriangle​left
{{e|9667}} x025c3 ltri, triangleleft
{{e|9674}} x025ca loz, lozenge
{{e|9675}} x025cb cir
{{e|9708}} x025ec tridot
{{e|9711}} x025ef xcirc, bigcirc
{{e|9720}} x025f8 ultri
{{e|9721}} x025f9 urtri
{{e|9722}} x025fa lltri
{{e|9723}} x025fb emptysmall​square
{{e|9724}} x025fc filledsmall​square
{{e|9733}} x02605 starf, bigstar
{{e|9734}} x02606 star
{{e|9742}} x0260e phone
{{e|9792}} x02640 female
{{e|9794}} x02642 male
{{e|9824}} x02660 spades, spadesuit
{{e|9827}} x02663 clubs, clubsuit
{{e|9829}} x02665 hearts, heartsuit
{{e|9830}} x02666 diams, diamondsuit
{{e|9834}} x0266a sung
{{e|9837}} x0266d flat
{{e|9838}} x0266e natur, natural
{{e|9839}} x0266f sharp
{{e|10003}} x02713 check, checkmark
{{e|10007}} x02717 cross
{{e|10016}} x02720 malt, maltese
{{e|10038}} x02736 sext
{{e|10072}} x02758 vertical​separator
{{e|10098}} x02772 lbbrk
{{e|10099}} x02773 rbbrk
{{e|10214}} x027e6 lobrk, leftdouble​bracket
{{e|10215}} x027e7 robrk, rightdouble​bracket
{{e|10216}} x027e8 lang, leftangle​bracket, langle
{{e|10217}} x027e9 rang, rightangle​bracket, rangle
{{e|10218}} x027ea lang
{{e|10219}} x027eb rang
{{e|10220}} x027ec loang
{{e|10221}} x027ed roang
{{e|10229}} x027f5 xlarr, longleftarrow, longleft​arrow
{{e|10230}} x027f6 xrarr, longrightarrow, longright​arrow
{{e|10231}} x027f7 xharr, longleft​rightarrow
{{e|10232}} x027f8 xlarr, longleftarrow, doublelong​leftarrow
{{e|10233}} x027f9 xrarr, longrightarrow, doublelong​rightarrow
{{e|10234}} x027fa xharr, longleft​rightarrow, doublelongleft​rightarrow
{{e|10236}} x027fc xmap, longmapsto
{{e|10239}} x027ff dzigrarr
{{e|10498}} x02902 nvlarr
{{e|10499}} x02903 nvrarr
{{e|10500}} x02904 nvharr
{{e|10501}} x02905 map
{{e|10508}} x0290c lbarr
{{e|10509}} x0290d rbarr, bkarow
{{e|10510}} x0290e lbarr
{{e|10511}} x0290f rbarr, dbkarow
{{e|10512}} x02910 rbarr, drbkarow
{{e|10513}} x02911 ddotrahd
{{e|10514}} x02912 uparrowbar
{{e|10515}} x02913 downarrowbar
{{e|10518}} x02916 rarrtl
{{e|10521}} x02919 latail
{{e|10522}} x0291a ratail
{{e|10523}} x0291b latail
{{e|10524}} x0291c ratail
{{e|10525}} x0291d larrfs
{{e|10526}} x0291e rarrfs
{{e|10527}} x0291f larrbfs
{{e|10528}} x02920 rarrbfs
{{e|10531}} x02923 nwarhk
{{e|10532}} x02924 nearhk
{{e|10533}} x02925 searhk, hksearow
{{e|10534}} x02926 swarhk, hkswarow
{{e|10535}} x02927 nwnear
{{e|10536}} x02928 nesear, toea
{{e|10537}} x02929 seswar, tosa
{{e|10538}} x0292a swnwar
{{e|10547}} x02933 rarrc
{{e|10549}} x02935 cudarrr
{{e|10550}} x02936 ldca
{{e|10551}} x02937 rdca
{{e|10552}} x02938 cudarrl
{{e|10553}} x02939 larrpl
{{e|10556}} x0293c curarrm
{{e|10557}} x0293d cularrp
{{e|10565}} x02945 rarrpl
{{e|10568}} x02948 harrcir
{{e|10569}} x02949 uarrocir
{{e|10570}} x0294a lurdshar
{{e|10571}} x0294b ldrushar
{{e|10574}} x0294e leftright​vector
{{e|10575}} x0294f rightup​downvector
{{e|10576}} x02950 downleft​rightvector
{{e|10577}} x02951 leftup​downvector
{{e|10578}} x02952 leftvectorbar
{{e|10579}} x02953 rightvectorbar
{{e|10580}} x02954 rightup​vectorbar
{{e|10581}} x02955 rightdown​vectorbar
{{e|10582}} x02956 downleft​vectorbar
{{e|10583}} x02957 downright​vectorbar
{{e|10584}} x02958 leftup​vectorbar
{{e|10585}} x02959 leftdown​vectorbar
{{e|10586}} x0295a leftteevector
{{e|10587}} x0295b rightteevector
{{e|10588}} x0295c rightup​teevector
{{e|10589}} x0295d rightdown​teevector
{{e|10590}} x0295e downleft​teevector
{{e|10591}} x0295f downright​teevector
{{e|10592}} x02960 leftup​teevector
{{e|10593}} x02961 leftdown​teevector
{{e|10594}} x02962 lhar
{{e|10595}} x02963 uhar
{{e|10596}} x02964 rhar
{{e|10597}} x02965 dhar
{{e|10598}} x02966 luruhar
{{e|10599}} x02967 ldrdhar
{{e|10600}} x02968 ruluhar
{{e|10601}} x02969 rdldhar
{{e|10602}} x0296a lharul
{{e|10603}} x0296b llhard
{{e|10604}} x0296c rharul
{{e|10605}} x0296d lrhard
{{e|10606}} x0296e udhar, upequilibrium
{{e|10607}} x0296f duhar, reverseup​equilibrium
{{e|10608}} x02970 roundimplies
{{e|10609}} x02971 erarr
{{e|10610}} x02972 simrarr
{{e|10611}} x02973 larrsim
{{e|10612}} x02974 rarrsim
{{e|10613}} x02975 rarrap
{{e|10614}} x02976 ltlarr
{{e|10616}} x02978 gtrarr
{{e|10617}} x02979 subrarr
{{e|10619}} x0297b suplarr
{{e|10620}} x0297c lfisht
{{e|10621}} x0297d rfisht
{{e|10622}} x0297e ufisht
⥿ {{e|10623}} x0297f dfisht
{{e|10629}} x02985 lopar
{{e|10630}} x02986 ropar
{{e|10635}} x0298b lbrke
{{e|10636}} x0298c rbrke
{{e|10637}} x0298d lbrkslu
{{e|10638}} x0298e rbrksld
{{e|10639}} x0298f lbrksld
{{e|10640}} x02990 rbrkslu
{{e|10641}} x02991 langd
{{e|10642}} x02992 rangd
{{e|10643}} x02993 lparlt
{{e|10644}} x02994 rpargt
{{e|10645}} x02995 gtlpar
{{e|10646}} x02996 ltrpar
{{e|10650}} x0299a vzigzag
{{e|10652}} x0299c vangrt
{{e|10653}} x0299d angrtvbd
{{e|10660}} x029a4 ange
{{e|10661}} x029a5 range
{{e|10662}} x029a6 dwangle
{{e|10663}} x029a7 uwangle
{{e|10664}} x029a8 angmsdaa
{{e|10665}} x029a9 angmsdab
{{e|10666}} x029aa angmsdac
{{e|10667}} x029ab angmsdad
{{e|10668}} x029ac angmsdae
{{e|10669}} x029ad angmsdaf
{{e|10670}} x029ae angmsdag
{{e|10671}} x029af angmsdah
{{e|10672}} x029b0 bemptyv
{{e|10673}} x029b1 demptyv
{{e|10674}} x029b2 cemptyv
{{e|10675}} x029b3 raemptyv
{{e|10676}} x029b4 laemptyv
{{e|10677}} x029b5 ohbar
{{e|10678}} x029b6 omid
{{e|10679}} x029b7 opar
{{e|10681}} x029b9 operp
{{e|10683}} x029bb olcross
{{e|10684}} x029bc odsold
{{e|10686}} x029be olcir
⦿ {{e|10687}} x029bf ofcir
{{e|10688}} x029c0 olt
{{e|10689}} x029c1 ogt
{{e|10690}} x029c2 cirscir
{{e|10691}} x029c3 cire
{{e|10692}} x029c4 solb
{{e|10693}} x029c5 bsolb
{{e|10697}} x029c9 boxbox
{{e|10701}} x029cd trisb
{{e|10702}} x029ce rtriltri
{{e|10703}} x029cf left​trianglebar
{{e|10704}} x029d0 right​trianglebar
{{e|10714}} x029da race
{{e|10716}} x029dc iinfin
{{e|10717}} x029dd infintie
{{e|10718}} x029de nvinfin
{{e|10723}} x029e3 eparsl
{{e|10724}} x029e4 smeparsl
{{e|10725}} x029e5 eqvparsl
{{e|10731}} x029eb lozf, blacklozenge
{{e|10740}} x029f4 ruledelayed
{{e|10742}} x029f6 dsol
{{e|10752}} x02a00 xodot, bigodot
{{e|10753}} x02a01 xoplus, bigoplus
{{e|10754}} x02a02 xotime, bigotimes
{{e|10756}} x02a04 xuplus, biguplus
{{e|10758}} x02a06 xsqcup, bigsqcup
{{e|10764}} x02a0c qint, iiiint
{{e|10765}} x02a0d fpartint
{{e|10768}} x02a10 cirfnint
{{e|10769}} x02a11 awint
{{e|10770}} x02a12 rppolint
{{e|10771}} x02a13 scpolint
{{e|10772}} x02a14 npolint
{{e|10773}} x02a15 pointint
{{e|10774}} x02a16 quatint
{{e|10775}} x02a17 intlarhk
{{e|10786}} x02a22 pluscir
{{e|10787}} x02a23 plusacir
{{e|10788}} x02a24 simplus
{{e|10789}} x02a25 plusdu
{{e|10790}} x02a26 plussim
{{e|10791}} x02a27 plustwo
{{e|10793}} x02a29 mcomma
{{e|10794}} x02a2a minusdu
{{e|10797}} x02a2d loplus
{{e|10798}} x02a2e roplus
{{e|10799}} x02a2f cross
{{e|10800}} x02a30 timesd
{{e|10801}} x02a31 timesbar
{{e|10803}} x02a33 smashp
{{e|10804}} x02a34 lotimes
{{e|10805}} x02a35 rotimes
{{e|10806}} x02a36 otimesas
{{e|10807}} x02a37 otimes
{{e|10808}} x02a38 odiv
{{e|10809}} x02a39 triplus
{{e|10810}} x02a3a triminus
{{e|10811}} x02a3b tritime
{{e|10812}} x02a3c iprod, intprod
⨿ {{e|10815}} x02a3f amalg
{{e|10816}} x02a40 capdot
{{e|10818}} x02a42 ncup
{{e|10819}} x02a43 ncap
{{e|10820}} x02a44 capand
{{e|10821}} x02a45 cupor
{{e|10822}} x02a46 cupcap
{{e|10823}} x02a47 capcup
{{e|10824}} x02a48 cupbrcap
{{e|10825}} x02a49 capbrcup
{{e|10826}} x02a4a cupcup
{{e|10827}} x02a4b capcap
{{e|10828}} x02a4c ccups
{{e|10829}} x02a4d ccaps
{{e|10832}} x02a50 ccupssm
{{e|10835}} x02a53 and
{{e|10836}} x02a54 or
{{e|10837}} x02a55 andand
{{e|10838}} x02a56 oror
{{e|10839}} x02a57 orslope
{{e|10840}} x02a58 andslope
{{e|10842}} x02a5a andv
{{e|10843}} x02a5b orv
{{e|10844}} x02a5c andd
{{e|10845}} x02a5d ord
{{e|10847}} x02a5f wedbar
{{e|10854}} x02a66 sdote
{{e|10858}} x02a6a simdot
{{e|10861}} x02a6d congdot
{{e|10862}} x02a6e easter
{{e|10863}} x02a6f apacir
{{e|10864}} x02a70 ape
{{e|10865}} x02a71 eplus
{{e|10866}} x02a72 pluse
{{e|10867}} x02a73 esim
{{e|10868}} x02a74 colone
{{e|10869}} x02a75 equal
{{e|10871}} x02a77 eddot, ddotseq
{{e|10872}} x02a78 equivdd
{{e|10873}} x02a79 ltcir
{{e|10874}} x02a7a gtcir
{{e|10875}} x02a7b ltquest
{{e|10876}} x02a7c gtquest
{{e|10877}} x02a7d les, lessslantequal, leqslant
{{e|10878}} x02a7e ges, greater​slantequal, geqslant
⩿ {{e|10879}} x02a7f lesdot
{{e|10880}} x02a80 gesdot
{{e|10881}} x02a81 lesdoto
{{e|10882}} x02a82 gesdoto
{{e|10883}} x02a83 lesdotor
{{e|10884}} x02a84 gesdotol
{{e|10885}} x02a85 lap, lessapprox
{{e|10886}} x02a86 gap, gtrapprox
{{e|10887}} x02a87 lne, lneq
{{e|10888}} x02a88 gne, gneq
{{e|10889}} x02a89 lnap, lnapprox
{{e|10890}} x02a8a gnap, gnapprox
{{e|10891}} x02a8b leg, lesseqqgtr
{{e|10892}} x02a8c gel, gtreqqless
{{e|10893}} x02a8d lsime
{{e|10894}} x02a8e gsime
{{e|10895}} x02a8f lsimg
{{e|10896}} x02a90 gsiml
{{e|10897}} x02a91 lge
{{e|10898}} x02a92 gle
{{e|10899}} x02a93 lesges
{{e|10900}} x02a94 gesles
{{e|10901}} x02a95 els, eqslantless
{{e|10902}} x02a96 egs, eqslantgtr
{{e|10903}} x02a97 elsdot
{{e|10904}} x02a98 egsdot
{{e|10905}} x02a99 el
{{e|10906}} x02a9a eg
{{e|10909}} x02a9d siml
{{e|10910}} x02a9e simg
{{e|10911}} x02a9f simle
{{e|10912}} x02aa0 simge
{{e|10913}} x02aa1 lessless
{{e|10914}} x02aa2 greater​greater
{{e|10916}} x02aa4 glj
{{e|10917}} x02aa5 gla
{{e|10918}} x02aa6 ltcc
{{e|10919}} x02aa7 gtcc
{{e|10920}} x02aa8 lescc
{{e|10921}} x02aa9 gescc
{{e|10922}} x02aaa smt
{{e|10923}} x02aab lat
{{e|10924}} x02aac smte
{{e|10925}} x02aad late
{{e|10926}} x02aae bumpe
{{e|10927}} x02aaf pre, preceq, precedesequal
{{e|10928}} x02ab0 sce, succeq, succeedsequal
{{e|10931}} x02ab3 pre
{{e|10932}} x02ab4 sce
{{e|10933}} x02ab5 prne, precneqq
{{e|10934}} x02ab6 scne, succneqq
{{e|10935}} x02ab7 prap, precapprox
{{e|10936}} x02ab8 scap, succapprox
{{e|10937}} x02ab9 prnap, precnapprox
{{e|10938}} x02aba scnap, succnapprox
{{e|10939}} x02abb pr
{{e|10940}} x02abc sc
{{e|10941}} x02abd subdot
{{e|10942}} x02abe supdot
⪿ {{e|10943}} x02abf subplus
{{e|10944}} x02ac0 supplus
{{e|10945}} x02ac1 submult
{{e|10946}} x02ac2 supmult
{{e|10947}} x02ac3 subedot
{{e|10948}} x02ac4 supedot
{{e|10949}} x02ac5 sube, subseteqq
{{e|10950}} x02ac6 supe, supseteqq
{{e|10951}} x02ac7 subsim
{{e|10952}} x02ac8 supsim
{{e|10955}} x02acb subne, subsetneqq
{{e|10956}} x02acc supne, supsetneqq
{{e|10959}} x02acf csub
{{e|10960}} x02ad0 csup
{{e|10961}} x02ad1 csube
{{e|10962}} x02ad2 csupe
{{e|10963}} x02ad3 subsup
{{e|10964}} x02ad4 supsub
{{e|10965}} x02ad5 subsub
{{e|10966}} x02ad6 supsup
{{e|10967}} x02ad7 suphsub
{{e|10968}} x02ad8 supdsub
{{e|10969}} x02ad9 forkv
{{e|10970}} x02ada topfork
{{e|10971}} x02adb mlcp
{{e|10980}} x02ae4 dashv, doublelefttee
{{e|10982}} x02ae6 vdashl
{{e|10983}} x02ae7 barv
{{e|10984}} x02ae8 vbar
{{e|10985}} x02ae9 vbarv
{{e|10987}} x02aeb vbar
{{e|10988}} x02aec not
{{e|10989}} x02aed bnot
{{e|10990}} x02aee rnmid
{{e|10991}} x02aef cirmid
{{e|10992}} x02af0 midcir
{{e|10993}} x02af1 topcir
{{e|10994}} x02af2 nhpar
{{e|10995}} x02af3 parsim
{{e|11005}} x02afd parsl
{{e|64256}} x0fb00 fflig
{{e|64257}} x0fb01 filig
{{e|64258}} x0fb02 fllig
{{e|64259}} x0fb03 ffilig
{{e|64260}} x0fb04 ffllig
𝒜 {{e|119964}} x1d49c ascr
𝒞 {{e|119966}} x1d49e cscr
𝒟 {{e|119967}} x1d49f dscr
𝒢 {{e|119970}} x1d4a2 gscr
𝒥 {{e|119973}} x1d4a5 jscr
𝒦 {{e|119974}} x1d4a6 kscr
𝒩 {{e|119977}} x1d4a9 nscr
𝒪 {{e|119978}} x1d4aa oscr
𝒫 {{e|119979}} x1d4ab pscr
𝒬 {{e|119980}} x1d4ac qscr
𝒮 {{e|119982}} x1d4ae sscr
𝒯 {{e|119983}} x1d4af tscr
𝒰 {{e|119984}} x1d4b0 uscr
𝒱 {{e|119985}} x1d4b1 vscr
𝒲 {{e|119986}} x1d4b2 wscr
𝒳 {{e|119987}} x1d4b3 xscr
𝒴 {{e|119988}} x1d4b4 yscr
𝒵 {{e|119989}} x1d4b5 zscr
𝒶 {{e|119990}} x1d4b6 ascr
𝒷 {{e|119991}} x1d4b7 bscr
𝒸 {{e|119992}} x1d4b8 cscr
𝒹 {{e|119993}} x1d4b9 dscr
𝒻 {{e|119995}} x1d4bb fscr
𝒽 {{e|119997}} x1d4bd hscr
𝒾 {{e|119998}} x1d4be iscr
𝒿 {{e|119999}} x1d4bf jscr
𝓀 {{e|120000}} x1d4c0 kscr
𝓁 {{e|120001}} x1d4c1 lscr
𝓂 {{e|120002}} x1d4c2 mscr
𝓃 {{e|120003}} x1d4c3 nscr
𝓅 {{e|120005}} x1d4c5 pscr
𝓆 {{e|120006}} x1d4c6 qscr
𝓇 {{e|120007}} x1d4c7 rscr
𝓈 {{e|120008}} x1d4c8 sscr
𝓉 {{e|120009}} x1d4c9 tscr
𝓊 {{e|120010}} x1d4ca uscr
𝓋 {{e|120011}} x1d4cb vscr
𝓌 {{e|120012}} x1d4cc wscr
𝓍 {{e|120013}} x1d4cd xscr
𝓎 {{e|120014}} x1d4ce yscr
𝓏 {{e|120015}} x1d4cf zscr
𝔄 {{e|120068}} x1d504 afr
𝔅 {{e|120069}} x1d505 bfr
𝔇 {{e|120071}} x1d507 dfr
𝔈 {{e|120072}} x1d508 efr
𝔉 {{e|120073}} x1d509 ffr
𝔊 {{e|120074}} x1d50a gfr
𝔍 {{e|120077}} x1d50d jfr
𝔎 {{e|120078}} x1d50e kfr
𝔏 {{e|120079}} x1d50f lfr
𝔐 {{e|120080}} x1d510 mfr
𝔑 {{e|120081}} x1d511 nfr
𝔒 {{e|120082}} x1d512 ofr
𝔓 {{e|120083}} x1d513 pfr
𝔔 {{e|120084}} x1d514 qfr
𝔖 {{e|120086}} x1d516 sfr
𝔗 {{e|120087}} x1d517 tfr
𝔘 {{e|120088}} x1d518 ufr
𝔙 {{e|120089}} x1d519 vfr
𝔚 {{e|120090}} x1d51a wfr
𝔛 {{e|120091}} x1d51b xfr
𝔜 {{e|120092}} x1d51c yfr
𝔞 {{e|120094}} x1d51e afr
𝔟 {{e|120095}} x1d51f bfr
𝔠 {{e|120096}} x1d520 cfr
𝔡 {{e|120097}} x1d521 dfr
𝔢 {{e|120098}} x1d522 efr
𝔣 {{e|120099}} x1d523 ffr
𝔤 {{e|120100}} x1d524 gfr
𝔥 {{e|120101}} x1d525 hfr
𝔦 {{e|120102}} x1d526 ifr
𝔧 {{e|120103}} x1d527 jfr
𝔨 {{e|120104}} x1d528 kfr
𝔩 {{e|120105}} x1d529 lfr
𝔪 {{e|120106}} x1d52a mfr
𝔫 {{e|120107}} x1d52b nfr
𝔬 {{e|120108}} x1d52c ofr
𝔭 {{e|120109}} x1d52d pfr
𝔮 {{e|120110}} x1d52e qfr
𝔯 {{e|120111}} x1d52f rfr
𝔰 {{e|120112}} x1d530 sfr
𝔱 {{e|120113}} x1d531 tfr
𝔲 {{e|120114}} x1d532 ufr
𝔳 {{e|120115}} x1d533 vfr
𝔴 {{e|120116}} x1d534 wfr
𝔵 {{e|120117}} x1d535 xfr
𝔶 {{e|120118}} x1d536 yfr
𝔷 {{e|120119}} x1d537 zfr
𝔸 {{e|120120}} x1d538 aopf
𝔹 {{e|120121}} x1d539 bopf
𝔻 {{e|120123}} x1d53b dopf
𝔼 {{e|120124}} x1d53c eopf
𝔽 {{e|120125}} x1d53d fopf
𝔾 {{e|120126}} x1d53e gopf
𝕀 {{e|120128}} x1d540 iopf
𝕁 {{e|120129}} x1d541 jopf
𝕂 {{e|120130}} x1d542 kopf
𝕃 {{e|120131}} x1d543 lopf
𝕄 {{e|120132}} x1d544 mopf
𝕆 {{e|120134}} x1d546 oopf
𝕊 {{e|120138}} x1d54a sopf
𝕋 {{e|120139}} x1d54b topf
𝕌 {{e|120140}} x1d54c uopf
𝕍 {{e|120141}} x1d54d vopf
𝕎 {{e|120142}} x1d54e wopf
𝕏 {{e|120143}} x1d54f xopf
𝕐 {{e|120144}} x1d550 yopf
𝕒 {{e|120146}} x1d552 aopf
𝕓 {{e|120147}} x1d553 bopf
𝕔 {{e|120148}} x1d554 copf
𝕕 {{e|120149}} x1d555 dopf
𝕖 {{e|120150}} x1d556 eopf
𝕗 {{e|120151}} x1d557 fopf
𝕘 {{e|120152}} x1d558 gopf
𝕙 {{e|120153}} x1d559 hopf
𝕚 {{e|120154}} x1d55a iopf
𝕛 {{e|120155}} x1d55b jopf
𝕜 {{e|120156}} x1d55c kopf
𝕝 {{e|120157}} x1d55d lopf
𝕞 {{e|120158}} x1d55e mopf
𝕟 {{e|120159}} x1d55f nopf
𝕠 {{e|120160}} x1d560 oopf
𝕡 {{e|120161}} x1d561 popf
𝕢 {{e|120162}} x1d562 qopf
𝕣 {{e|120163}} x1d563 ropf
𝕤 {{e|120164}} x1d564 sopf
𝕥 {{e|120165}} x1d565 topf
𝕦 {{e|120166}} x1d566 uopf
𝕧 {{e|120167}} x1d567 vopf
𝕨 {{e|120168}} x1d568 wopf
𝕩 {{e|120169}} x1d569 xopf
𝕪 {{e|120170}} x1d56a yopf
𝕫 {{e|120171}} x1d56b zopf